TABLE OF CONTENTS

This *Blueprint and Study Guide* is intended to provide general information to anyone who will be taking the NPLEX Part I - Biomedical Science Examination. The NPLEX Board reserves the right to make revisions as necessary. Examinees should consult the latest edition of the *Blueprint and Study Guide* for the most up-to-date information regarding the examination. NABNE sets and implements the policies that govern the administration of the NPLEX. Examinees should consult the latest edition of the NABNE *Part I Bulletin of Information* at www.nabne.org for up-to-date information regarding these policies.

INTRODUCTION .. 1

OVERVIEW OF THE NPLEX PART I - BIOMEDICAL SCIENCE EXAMINATION. 2

NPLEX BIOMEDICAL SCIENCE COMPETENCIES. 3
 Cardiovascular System. ... 4
 Endocrine System. .. 6
 Gastrointestinal System.. 8
 Hematopoietic System. .. 10
 Immunological System.. 12
 Integumentary System.. 14
 Musculoskeletal System... 16
 Neurological System... 18
 Pulmonary System and Upper Respiratory Tract. 20
 Reproductive System... 22
 Urinary System.. 24

ABBREVIATIONS THE EXAMINEE IS EXPECTED TO KNOW..................... 26

FORMAT FOR THE EXAMINATION. ... 27

EXAMPLES OF BIOMEDICAL SCIENCE ITEM CLUSTERS. 28
 ANSWERS TO ITEMS... 44

SUGGESTIONS FOR A STUDY STRATEGY. 45

SUGGESTIONS FOR TAKING AN NPLEX MULTIPLE-CHOICE EXAMINATION. 46

THE NPLEX PROCESS. .. 47

REFERENCE BOOKLIST. ... 48
INTRODUCTION

NPLEX, Inc., is an independent, nonprofit organization whose purpose is to prepare valid and reliable board-level licensing examinations for the naturopathic profession in the U.S. and Canada. Agencies that regulate the practice of naturopathic medicine use NPLEX results in determining a candidate’s eligibility for licensure. The exam development process is overseen by the NPLEX Council of Exam Chairs. NABNE (the North American Board of Naturopathic Examiners) verifies applicant eligibility to sit for the NPLEX, administers the NPLEX examinations, and reports NPLEX exam results to examinees and regulatory authorities.

Knowledge of both the biomedical sciences and the clinical sciences is necessary to ensure that the candidate for licensure has the knowledge necessary to practice safely. NPLEX prepares one Part I (Biomedical Science) examination and three Part II (Clinical Science) examinations. The Part I - Biomedical Science Examination is designed to measure a student’s readiness to enter the clinical phase of training, assessing mastery of the competencies identified by biomedical science faculty from the accredited naturopathic medical colleges. The Part II - Clinical Science Examination(s) are designed to measure a graduate’s readiness to practice naturopathic medicine, assessing mastery of the competencies derived from a job analysis of practicing naturopathic physicians. The most recent naturopathic practice analysis was completed in 2011.

The NPLEX Blueprint and Study Guide includes information in five general areas. The Blueprint section contains a list of competencies on which items are based and a list of conditions on which cases are based. Other sections provide information on the structure of exam items with some examples of items, suggestions on how to study for and take an NPLEX examination, the post-examination scoring process, a list of abbreviations the examinee is required to know, and a list of some of the books from which items are written or reviewed.

This document is provided to help you create a study strategy for preparing to take the NPLEX Part I - Biomedical Science Examination. The list of competencies is not meant to be a literal structure for the examination. Questions might be asked on the examination that do not fit into a single body system, and items on the examination will not be in the same order as on the list of competencies.
The purpose of the NPLEX Part I - Biomedical Science Examination is to ensure that the student has acquired the foundation in biomedical sciences that is essential to clinical training as well as for practice as a naturopathic doctor. Students are encouraged to take the NPLEX Part I - Biomedical Science Examination at the end of their second year, after they have completed their biomedical science course work and before they enter the clinical training phase. NABNE requires that graduates pass the Part I - Biomedical Science Examination before they will be allowed to take the Part II - Clinical Science Examination(s).

There are two facets to testing in the context of naturopathic board-level examinations: what is necessary as a foundation for clinical training, and what will be clinically relevant after the student has graduated. The competencies listed in this study guide address both aspects.

In 2007-2008, biomedical science faculty from the accredited naturopathic medical colleges reviewed and expanded the list of NPLEX biomedical competencies deemed to be necessary as a foundation for the clinical training of a naturopathic physician. Some of the knowledge necessary to perform the tasks required for entering the clinical phase of naturopathic medical training may not be specified here; this basic knowledge should be assumed to be necessary both for safe practice and for passing this examination.

On the list of competencies that follows, the percentages for each system (in parentheses) are approximate, but provide a valid representation for study focus.
NPlex Biomedical Science Competencies

The study guide for the NPlex Part I - Biomedical Science Examination is exclusively and explicitly competency-based.

Listed below are a few competencies from the cardiovascular section of this study guide along with examples of the types of information covered by the competency. The following examples do not cover the scope or breadth of the questions on the integrated examination; they are provided for illustration purposes only.

In general, the student who is entering her/his third year in naturopathic medical school should be able to:

- **Competency:** Describe the location, function, autonomic regulation, and electrical measurement of the conduction system of the heart.
 - **Example:** The student should know the structures and understand the mechanisms that are involved in normal and abnormal cardiac rhythms.

- **Competency:** Explain the functions and regulatory mechanisms of the cardiac cycle.
 - **Example:** The student should understand how hypertension affects the afterload of the heart, and how it impacts cardiac output.

- **Competency:** Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to cardiovascular function and pathology.
 - **Example:** The student should understand lipid transport in normal physiology and in pathological conditions such as atherosclerosis.
 - **Example:** The student should understand how abnormal heme synthesis can result in the development of porphyria.

- **Competency:** Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of congestive heart failure.
 - **Example:** The student should understand the relationship between underlying pathology and the development of the signs and symptoms associated with CHF.
CARDIOVASCULAR SYSTEM (12%)

In regard to the cardiovascular system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the cardiovascular system, including the valves and chambers of the heart and the blood vessels.

2. Describe the microscopic anatomy of the heart and blood vessels.

3. Describe the location, characterize the structure, and delineate the boundaries of the heart, the major vessels, and the pericardium.

4. Describe the location and explain the function of the heart valves in relation to the cardiac cycle.

5. Explain the physiological basis of contraction in cardiac muscle.

6. Explain the functions and regulatory mechanisms of the cardiac cycle.

7. Describe the location, function, autonomic regulation, and electrical measurement of the conduction system of the heart.

8. Describe the location and branching patterns of coronary arteries, and trace the circulatory pathways of the blood supply of the heart.

9. Describe the anatomical patterns of blood distribution to the somatic and visceral areas of the body.

10. Describe the location, structure, circulatory pathways, and functions of the lymphatic vessels, tissues, and organs.

11. Describe the forces involved in the circulation of blood and lymph, and the regulation of blood flow.

12. Explain the acute and adaptive effects that exercise has on the cardiovascular system.

13. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to cardiovascular function and pathology.

14. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of the genetic abnormalities that underlie cardiovascular disease processes.

15. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
<table>
<thead>
<tr>
<th>15.1</th>
<th>hypertensive heart diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>pulmonary hypertension</td>
</tr>
<tr>
<td>b.</td>
<td>systemic hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>congestive heart failure (CHF)</td>
</tr>
<tr>
<td>a.</td>
<td>left-sided</td>
</tr>
<tr>
<td>b.</td>
<td>right-sided</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3</td>
<td>ischemic heart disease</td>
</tr>
<tr>
<td>a.</td>
<td>angina pectoris</td>
</tr>
<tr>
<td>b.</td>
<td>chronic ischemic heart disease</td>
</tr>
<tr>
<td>c.</td>
<td>myocardial infarction (MI)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.4</td>
<td>valvular heart diseases</td>
</tr>
<tr>
<td>a.</td>
<td>aortic stenosis/insufficiency</td>
</tr>
<tr>
<td></td>
<td>mitral stenosis/insufficiency</td>
</tr>
<tr>
<td>b.</td>
<td>endocarditis</td>
</tr>
<tr>
<td>c.</td>
<td>mitral valve prolapse (MVP)</td>
</tr>
<tr>
<td>d.</td>
<td>rheumatic heart disease</td>
</tr>
<tr>
<td>e.</td>
<td>carcinoid heart disease</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>primary myocardial diseases</td>
</tr>
<tr>
<td>a.</td>
<td>cardiomyopathies (dilated, restrictive, hypertrophic)</td>
</tr>
<tr>
<td>b.</td>
<td>myocarditis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.6</td>
<td>pericardial disease</td>
</tr>
<tr>
<td>a.</td>
<td>metastatic disease</td>
</tr>
<tr>
<td>b.</td>
<td>pericardial effusions</td>
</tr>
<tr>
<td>c.</td>
<td>pericarditis (primary & secondary)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.7</td>
<td>congenital heart conditions</td>
</tr>
<tr>
<td>a.</td>
<td>bicuspid aortic valve</td>
</tr>
<tr>
<td>b.</td>
<td>patent ductus arteriosus</td>
</tr>
<tr>
<td>c.</td>
<td>septal defects (interventricular, atrial)</td>
</tr>
<tr>
<td>d.</td>
<td>tetralogy of Fallot</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.8</td>
<td>hemodynamic conditions</td>
</tr>
<tr>
<td>a.</td>
<td>embolism</td>
</tr>
<tr>
<td>b.</td>
<td>hemorrhage</td>
</tr>
<tr>
<td>c.</td>
<td>infarction</td>
</tr>
<tr>
<td>d.</td>
<td>edema</td>
</tr>
<tr>
<td>e.</td>
<td>shock</td>
</tr>
<tr>
<td>f.</td>
<td>thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.9</td>
<td>vascular conditions</td>
</tr>
<tr>
<td>a.</td>
<td>aneurysm</td>
</tr>
<tr>
<td>b.</td>
<td>aortic dissection</td>
</tr>
<tr>
<td>c.</td>
<td>arteriosclerosis and</td>
</tr>
<tr>
<td></td>
<td>atherosclerosis</td>
</tr>
<tr>
<td>d.</td>
<td>familial hypercholesterolemia</td>
</tr>
<tr>
<td>e.</td>
<td>giant cell arteritis (temporal arteritis)</td>
</tr>
<tr>
<td>f.</td>
<td>peripheral arterial disease (PAD)</td>
</tr>
<tr>
<td>g.</td>
<td>pulmonary embolism (PE)</td>
</tr>
<tr>
<td>h.</td>
<td>Raynaud phenomenon (primary and secondary)</td>
</tr>
<tr>
<td>i.</td>
<td>thromboangitis obliterans</td>
</tr>
<tr>
<td>j.</td>
<td>thrombosis - deep vein (DVT)</td>
</tr>
<tr>
<td>k</td>
<td>varicose veins</td>
</tr>
<tr>
<td>l.</td>
<td>vasculitis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>vascular neoplasms</td>
</tr>
<tr>
<td>a.</td>
<td>hemangiomas</td>
</tr>
<tr>
<td>b.</td>
<td>Kaposi sarcoma</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.11</td>
<td>infectious vascular diseases</td>
</tr>
<tr>
<td>a.</td>
<td>bacterial endocarditis</td>
</tr>
<tr>
<td>b.</td>
<td>Chagas disease</td>
</tr>
<tr>
<td>c.</td>
<td>Lyme Disease</td>
</tr>
<tr>
<td>d.</td>
<td>Rocky Mountain Spotted Fever</td>
</tr>
<tr>
<td>e.</td>
<td>viral hemorrhagic fever (Yellow fever, Dengue fever, filoviruses)</td>
</tr>
<tr>
<td>f.</td>
<td>viral myocarditis</td>
</tr>
</tbody>
</table>

16. Explain the relationship between the cardiovascular and pulmonary systems.
ENDOCRINE SYSTEM (8%)

In regard to the endocrine system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the organs of the endocrine system.

2. Describe the microscopic anatomy and derivations of the endocrine organs.

3. Describe the location and structure of the endocrine organs.

4. Describe the location and structure of the circulatory pathways of blood to the endocrine organs.

5. Explain the mechanisms, factors affecting, functions, and control of endocrine organs.

6. Explain the composition, function, effects, transport, and regulation of endocrine hormones, including feedback mechanisms.

7. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to endocrine function and pathology.

8. Explain the biochemistry of synthesis and degradation of hormones involved in the endocrine system.

9. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie endocrine disease processes.

10. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
10.1 **diseases of hyperfunction of endocrine organs**
 a. hyperadrenalism (Cushing syndrome, Conn syndrome, congenital adrenal hyperplasia)
 b. hyperparathyroidism (primary and secondary)
 c. hyperpituitarism (acromegaly, gigantism)
 d. hyperthyroidism (multinodular goiter, Graves disease)

10.2 **diseases of hypofunction of endocrine organs**
 a. diabetes insipidus
 b. hypoadrenalism (Addison disease, primary acute insufficiency, secondary adrenocortical insufficiency)
 c. hypoparathyroidism
 d. hypopituitarism (empty sella syndrome, hypothalamic lesions)
 e. hypothyroidism (iodine deficiency goiter)

10.3 **inflammatory endocrine diseases**
 a. Hashimoto thyroiditis
 b. granulomatous subacute thyroiditis

10.4 **metabolic endocrine disease**
 a. diabetes types I and II (DM)

10.5 **congenital endocrine disease**
 a. thyroglossal duct cyst

10.6 **endocrine vascular diseases**
 a. postpartum pituitary necrosis (Sheehan necrosis)

10.7 **endocrine neoplasms**
 a. adrenal
 b. pancreas (insulinoma)
 c. parathyroid
 d. pituitary (adenoma, non-functioning tumor, craniopharyngioma)
 e. thyroid (adenoma and follicular, papillary and medullary carcinomas, euthyroid goiter)
 f. other neoplasms (gastrinoma, multiple endocrine neoplasia, types 1 & 2 pheochromocytoma)

10.8 **infectious endocrine diseases**
 a. infectious thyroiditis
 b. Waterhouse-Friderichsen syndrome
GASTROINTESTINAL SYSTEM (12%)

In regard to the gastrointestinal system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the gastrointestinal tract and glands.

2. Describe the microscopic anatomy of the gastrointestinal tract and glands.

3. Describe the location, structure, and boundaries of the organs and glands of the gastrointestinal system.

4. Describe the gastrointestinal system in relation to the oral, mediastinal, and abdominopelvic cavities.

5. Describe the location, structure, and circulatory pathways of the blood supply of the gastrointestinal system.

6. Explain the mechanisms, functions, regulation, and factors affecting mastication, deglutition, digestion, absorption, peristalsis, and defecation.

7. Explain the composition, function, transport, and regulation of products of digestion.

8. Explain the biochemistry of digestive processes, including the endogenous production of chemical energy, and the chemical composition and dietary requirements of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors.

9. Explain the non-digestive functions of the salivary glands, liver, and gall bladder, including bilirubin metabolism and detoxification pathways.

10. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie gastrointestinal disease processes.

11. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
11.1 **salivary gland disease**
 a. parotitis

11.2 **pancreatic disease**
 a. pancreatitis

11.3 **hepatic diseases and disorders**
 a. cholestasis
 b. cirrhosis
 c. Gilbert syndrome
 d. hepatitis (non-infectious)
 e. portal hypertension

11.4 **gallbladder diseases**
 a. cholecystitis
 b. choledolithiasis

11.5 **deficiency and malabsorption conditions**
 a. achlorhydria
 b. gluten-sensitive enteropathy (celiac disease)
 c. enzyme deficiencies
 d. lactase deficiency

11.6 **obstructive gastrointestinal diseases**
 a. achalasia
 b. adynamic ileus
 c. hernia
 d. intussusception/volvulus
 e. megacolon

11.7 **inflammatory gastrointestinal diseases**
 a. appendicitis
 b. Barrett esophagus
 c. diverticular disease
 d. enteritis
 e. esophageal/gastric/duodenal ulcers
 f. esophagitis (non-infectious)
 g. gastritis
 h. gastroesophageal reflux disease (GERD)
 I. inflammatory bowel disease (regional enteritis [Crohn disease], ulcerative colitis)

11.8 **congenital gastrointestinal disease**
 a. esophageal atresia
 b. esophageal webs and rings
 c. Meckel diverticulum
 d. pyloric stenosis

11.9 **conditions of the abdominal cavity**
 a. ascites
 b. peritonitis/adhesions

11.10 **gastrointestinal vascular diseases**
 a. esophageal varices
 b. hemorrhoids
 c. infarction
 d. vascular ectasias of the colon

11.11 **gastrointestinal neoplasms**
 a. esophageal
 b. gastric
 c. intestinal
 d. liver
 e. oral (leukoplakia)
 f. pancreas
 g. colorectal

11.12 **infectious gastrointestinal diseases**
 a. enterocolitis
 b. esophagitis
 c. gastroenteritis
 d. gingivitis/periodontitis
 e. oral thrush
 f. stomatitis
 g. viral hepatitis
HEMATOPOIETIC SYSTEM (6%)

In regard to the hematopoietic system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the microscopic anatomy, origins, and maturation of blood cells.

2. Describe the composition, and explain the function and regulation of blood cells and plasma.

3. Describe the synthesis and degradation of blood cells.

4. Explain the mechanisms and factors affecting hematopoiesis and hemostasis.

5. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to hematopoietic function, hemostasis, and hemoglobin function, formation, and pathology.

6. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of the genetic abnormalities that underlie hematopoietic disease processes.

7. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
7.1 **diseases involving production of blood cells**
 a. anemias (macrocytic, microcytic, aplastic)
 b. polycythemia (vera, secondary)

7.2 **diseases involving lysis of blood cells**
 a. hemolytic anemia (sickle cell, thalassemia, glucose-6 phosphate dehydrogenase deficiency [G6PD], spheroctysis)
 b. hemolytic disease of the newborn (erythroblastosis fetalis)

7.3 **clotting abnormalities**
 a. disseminated intravascular coagulation (DIC)
 b. hemophilia
 c. idiopathic thrombocytopenic purpura (ITP)
 d. von Willebrand disease
 e. vitamin K deficiency

7.4 **blood & lymph neoplasms**
 a. leukemias
 b. lymphoma (Hodgkin, non-Hodgkin)
 c. multiple myeloma

7.5 **infectious diseases of the blood**
 a. babesiosis
 b. malaria
 c. schistosomiasis
In regard to the immunological system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the thymus.
2. Describe the microscopic anatomy of the lymphoid organs.
3. Describe the structure and function of histocompatibility antigens and their associated diseases.
4. Describe the location and drainage patterns of lymphatic vessels.
5. Explain the functions of cells, antibodies, and cytokines in humoral and cell-mediated immunity.
6. Explain the pathways of cellular and cytokine signaling in response to injury, infection, and foreign bodies.
7. Explain the structure, function, and pathways of complement compounds.
8. Explain the mechanisms, factors affecting, functions, and control of lymphatic organs.
9. Explain the composition, function, and transport of lymphatic fluid.
10. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors, and the biochemical processes and associated constituents involved in immunological function and pathology.
11. Explain the biochemistry of synthesis and degradation of lymphatic fluid and its components.
12. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of the genetic abnormalities that underlie immunological disease processes.
13. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
13.1 immunodeficiency diseases of congenital origin
 a. common variable immunodeficiency
 b. DiGeorge syndrome
 c. selective IgA deficiency
 d. severe combined immunodeficiency
 e. X-linked agammaglobulinemia

13.2 immunodeficiency diseases of acquired origin
 a. drug-induced immunodeficiencies
 b. human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS)

13.3 diseases of hypersensitivity
 a. type I (anaphylaxis)
 b. type II (autoimmune hemolytic anemia, Goodpasture syndrome, myasthenia gravis [MG])
 c. type III (systemic lupus erythematos [SLE], polyarteritis nodosa, poststreptococcal glomerulonephritis, rheumatoid arthritis)
 d. type IV (granulomatous inflammation, transplant rejection)

13.4 other autoimmune diseases
 a. progressive systemic sclerosis (scleroderma)
 b. rheumatic fever
 c. Sjögren syndrome

13.5 diseases of amyloids
 a. primary amyloidosis
 b. secondary amyloidosis

13.6 systemic infectious diseases
 a. erythema infectiosum (fifth disease)
 b. Haemophilus influenzae B
 c. influenza
 d. measles
 e. mononucleosis
 f. mumps
 g. roseola infantum
 h. rubella
 i. scarlet fever
 j. toxoplasmosis
INTEGUMENTARY SYSTEM (6%)

In regard to the integumentary system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the microscopic anatomy, derivations, and differentiating features of the layers of the skin and dermal-epidermal junction.

2. Describe the embryological development of the ectoderm.

3. Explain the function of membrane constituents and the mechanisms governing transport across cell membranes, osmosis, membrane potential, and ionic equilibrium.

4. Explain the principles of thermal physiology, including regulation of body temperature.

5. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to the integumentary system.

6. Explain the biochemistry of non-vitamin antioxidants and free radical scavengers as they relate to integumentary function and pathology.

7. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie integumentary disease processes.

8. Explain the processes relating to adaptive changes, cellular injury, pigmentation, infiltration, and neoplasia.

9. Explain the principles of infectious disease in dermatological pathologies including normal flora, stages of infection, and characteristics of pathogenesis.

10. Explain the complications and clinical characteristics of skin trauma and healing mechanisms.

11. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
11.1 pigmenta�ion changes of the skin
 a. nevocellular nevus
 b. vitiligo
11.2 acute inflammatory dermatological conditions
 a. atopic dermatitis (eczema)
 b. contact dermatitis
 c. erythema multiforme
 d. urticaria
11.3 chronic inflammatory dermatological conditions
 a. acne rosacea
 b. lichen planus
 c. psoriasis
11.4 blistering diseases
 a. epidermolysis bullosa
 b. pemphigoid
 c. pemphigus
11.5 genetic dermatological conditions
 a. albinism
 b. Ehlers-Danlos syndrome
11.6 benign and pre-malignant lesions of the skin
 a. actinic keratosis
 b. dysplastic nevi
 c. seborrheic keratosis
11.7 malignant neoplasms of the skin
 a. basal cell carcinoma
 b. squamous cell carcinoma
 c. melanoma
11.8 infectious dermatological diseases
 a. acne vulgaris
 b. candidiasis
 c. cellulitis
 d. erysipelas
 e. erythema nodosum
 f. folliculitis
 g. impetigo
 h. methicillin resistant Staphylococcus aureus (MRSA)
 i. molluscum contagiosum
 j. tinea
 k. varicella zoster virus (VZV)
 l. verrucae
 m. wound infection/needle stick
MUSCULOSKELETAL SYSTEM (10%)

In regard to the musculoskeletal system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the musculoskeletal system including muscle, bone, and joints.

2. Describe the microscopic anatomy of the musculoskeletal system including skeletal, cardiac, and smooth muscle; compact and spongy bone; and fibrous, cartilaginous, and synovial joints.

3. Describe the location and structure, and explain the function of vertebrae, the bones of the skull, vertebral column, pectoral girdle, upper extremity, pelvic girdle, and lower extremity.

4. Describe the location, structure, and innervation of the joints, and explain the functions of the different types of joints in the body.

5. Describe the origin, insertion, main action, and innervation of the muscles of the body regions: head and neck; upper and lower extremities; and back, thorax, abdomen, and pelvis.

6. Describe the embryology and structure, and explain the function of connective tissues of the musculoskeletal system.

7. Explain the mechanisms and factors affecting contraction of skeletal, smooth, and cardiac muscle.

8. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to musculoskeletal function and pathology.

9. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of the genetic defects that underlie musculoskeletal disease processes.

10. Explain the relationship between the musculoskeletal and neurological systems.

11. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
11.1 musculoskeletal nutritional deficiencies
 a. osteomalacia
 b. rickets
 c. scurvy
11.2 inflammatory musculoskeletal diseases
 a. ankylosing spondylitis
 b. bursitis
 c. fibromyalgia
 d. gout
 e. myositis (dermatomyositis, polymyositis)
 f. polymyalgia rheumatica (PMR)
 g. reactive arthritis (Reiter syndrome)
 h. tendonitis
11.3 metabolic musculoskeletal diseases
 a. osteopetrosis
11.4 congenital musculoskeletal diseases
 a. Marfan syndrome
 b. muscular dystrophy
 c. osteogenesis imperfecta
11.5 degenerative musculoskeletal diseases
 a. osteoarthritis (OA)/degenerative joint disease (DJD)
 b. osteoporosis
 c. Paget disease
 d. avascular necrosis
11.6 musculoskeletal neoplasms
 a. chondrosarcoma
 b. Ewing sarcoma
 c. osteoid osteoma
 d. osteosarcoma
 e. rhabdomyosarcoma
11.7 infectious musculoskeletal diseases
 a. septic (infectious) arthritis
 b. necrotizing fasciitis
 c. osteomyelitis
 d. wet gangrene
11.8 trauma
 a. injury to the musculoskeletal system
In regard to the neurological system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the neural tube and its derivatives.
2. Describe the microscopic anatomy of motor and sensory neurons and nerves.
3. Describe the location and structure, and explain the function of the neural structures within the cranial cavity and vertebral canal.
4. Describe the location and structure, and explain the function of the cerebrospinal fluid compartments and meninges.
5. Describe the location and explain the functions of sensory receptors and the associated anatomical pathways for somatic and visceral sensory perception and reflexes.
6. Describe the location, structure, and pathways, and explain the functions of the special senses (visual, auditory, gustatory, olfactory, and vestibular systems) and associated glands.
7. Describe the location, pathways, and functions of the somatic motor and sensory components and the visceral motor and sensory components.
8. Describe the location and explain the function of cranial and spinal nerves.
9. Describe the location and pathways, and explain the functions of the autonomic nervous system.
10. Describe the pathways of the blood supply and the origin and flow of cerebrospinal fluid for the central nervous system.
11. Describe the pathways and explain the functions and patterns of activity for the association cortex.
12. Explain the mechanisms, factors affecting, function, and control of hypothalamic and limbic pathways.
13. Explain the mechanisms, factors affecting, function, and control of synaptic transmission, graded potentials, action potential, and axon conduction.
14. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to neurological function and pathology.
15. Explain the biochemistry of neurotransmitter synthesis, function, and degradation.
16. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie neurological disease processes.
17. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the next page.
17.1 neurological vascular disease
a. cerebral infarction (thrombosis, embolism, common obstructions)
b. cerebral vascular accident (CVA) (ischemic/hemorrhagic)
c. ischemic-hypoxic encephalopathy
d. intracranial hemorrhage (cerebral, subarachnoid, epidural/subdural)
e. vascular lesions of the spinal cord

17.2 degenerative and demyelination diseases
a. Alzheimer disease
b. amyotrophic lateral sclerosis (ALS)
c. extrapyramidal diseases (spinocerebellar degeneration, Huntington chorea, Parkinsonism)
d. Guillain-Barré syndrome
e. multiple sclerosis (MS)
f. acute disseminated encephalomyelitis

17.3 diseases of increased intracranial fluid
a. cerebral edema
b. hydrocephalus

17.4 metabolic and nutritional neurological diseases
a. hepatic encephalopathy
b. peripheral neuropathy
c. vitamin B₁₂ deficiency
d. Wernicke-Korsakoff syndrome

17.5 congenital and genetic neurological diseases
a. Down syndrome
b. leukodystrophies
c. phenylketonuria (PKU)
d. storage diseases
e. Wilson disease

17.6 neurological neoplasms
a. medulloblastoma
b. meningiomas
c. neuroblastoma
d. neuronal tumors (astrocytomas, oligodendrogliomas)
e. tumors of peripheral nerves (schwannoma, neurofibromatosis)

17.7 infections of the CNS & PNS
a. arboviruses
b. botulism
c. brain abscess
d. encephalitis
e. fungal infections
f. herpes viruses
g. leprosy
h. meningitis
i. neurosyphilis
j. poliomyelitis
k. prion disease
l. progressive multifocal leukoencephalopathy (PML)
m. subacute sclerosing panencephalitis (SSPE)
n. tetanus

17.8 CNS trauma
a. traumatic brain injury (TBI) (concussion, contusion, hemorrhage, hematoma)
b. spinal cord compression/transection

17.9 PNS trauma/compression
a. Bell palsey
b. carpal tunnel syndrome (CTS)
c. disc herniation
d. nerve root entrapment
e. sciatica
f. thoracic outlet syndrome (TOS)
g. trigeminal neuralgia

17.10 diseases of the special senses
a. blepharitis
b. cataracts
c. conjunctivitis
d. glaucoma
e. iritis/keratitis
f. macular degeneration
g. uveitis
h. Meniere disease (idiopathic endolymphatic hydrops)
i. otitis
j. vestibulitis

18. Explain the relationship of the neurological system to the endocrine system.
In regard to the pulmonary system and upper respiratory tract, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the respiratory tract.
2. Describe the microscopic anatomy of the respiratory tract.
3. Describe the boundaries and anatomical structures associated with the organs of the upper respiratory tract.
4. Describe the boundaries and components of the thorax in relation to the pleura, lungs, heart, and mediastinum.
5. Describe the circulation of blood and the flow of air in the lungs.
6. Explain the mechanisms, functions, regulation, and factors affecting ventilation.
7. Explain the mechanisms, functions, regulation, and factors affecting gas exchange and tissue perfusion.
8. Explain the transport and regulation of blood gases.
9. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to pulmonary function and pathology.
10. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of the genetic abnormalities that underlie pulmonary disease processes.
11. Explain the biochemistry of energy production and utilization as it relates to the respiratory system.
12. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
12.1 restrictive pulmonary diseases
 a. respiratory distress syndrome
 b. idiopathic pulmonary fibrosis
 c. pneumoconiosis
 d. sarcoidosis

12.2 obstructive pulmonary diseases
 a. asthma
 b. bronchiectasis
 c. chronic bronchitis
 d. emphysema

12.3 diseases of the upper respiratory tract
 a. bronchitis
 b. epiglottitis
 c. laryngitis
 d. rhinitis
 e. sinusitis
 f. pharyngitis
 g. tonsillitis

12.4 disorders of the pleural cavity and lung expansion
 a. chylothorax
 b. hemothorax
 c. obstructive atelectasis
 d. pleural fibrosis (asbestosis)
 e. pneumothorax

12.5 pulmonary vascular disease
 a. pulmonary edema
 b. pulmonary emboli
 c. pulmonary infarction

12.6 neoplasms of the pulmonary system and upper respiratory tract
 a. adenocarcinomas
 b. bronchial carcinoid
 c. esophageal
 d. laryngeal
 e. mesothelioma
 f. nasopharyngeal carcinoma
 g. polyps
 h. small-cell carcinoma (squamous)
 i. non-small-cell carcinoma (squamous)

12.7 congenital pulmonary diseases
 a. cystic fibrosis (CF)
 b. tracheoesophageal fistula

12.8 infectious diseases of the pulmonary system and upper respiratory tract
 a. atypical pneumonia
 b. bronchopneumonia
 c. diphtheria
 d. fungal pneumonia
 e. lobar pneumonia
 f. lung abscess
 g. pertussis
 h. respiratory syncytial virus (RSV)
 i. tuberculosis (TB)
REPRODUCTIVE SYSTEM (10%)

In regard to the reproductive system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the organs of the male and female reproductive systems, the placenta, and the breast.

2. Describe the gross and microscopic anatomy of the male and female reproductive organs and the breast.

3. Explain developmental processes related to gametogenesis, implantation, and embryogenesis.

4. Describe the location, structure, and boundaries of the male and female reproductive systems and the breast.

5. Describe the innervation and pathway of blood supply in the reproductive organs and the breast.

6. Explain the mechanisms, function, regulation, and factors affecting reproductive processes and lactation.

7. Explain the composition, function, effects, transport, and regulation of reproductive hormones.

8. Explain the biochemistry of synthesis and degradation of the hormones and other secretions involved in reproductive function and pathology.

9. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to reproductive function and pathology.

10. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie reproductive disease processes.

11. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of conditions listed on the opposite page.
11.1 functional reproductive conditions
 a. amenorrhea
 b. anovulation
 c. dysfunctional uterine bleeding
11.2 inflammatory diseases of the reproductive tract
 a. balanitis
 b. cervicitis
 c. endometriosis
 d. endometritis
 e. orchitis
 f. pelvic inflammatory disease
 g. salpingitis
 h. vaginitis
11.3 congenital and genetic diseases
 a. cryptorchidism
 b. epispadias
 c. fragile X syndrome
 d. hypospadias
 e. imperforate hymen
 f. Klinefelter syndrome
 g. paraphimosis
 h. phimosis
 i. pseudohermaphroditism
 j. septate vagina and uterus
 k. Turner syndrome
11.4 benign conditions of the penis and scrotum
 a. erectile dysfunction
 b. hematocele
 c. hydrocele
 d. spermatocele
 e. varicocele
11.5 conditions of the breast
 a. diffuse cystic mastopathy (fibrocystic breast disease)
 b. galactocele
 c. mammary duct ectasia
 d. mastitis
 e. traumatic fat necrosis
 f. benign and malignant neoplasms (fibroadenoma, lobular carcinoma, ductal carcinoma, Paget disease of the breast)
11.6 infectious diseases and hyperplasia of the prostate
 a. benign prostatic hyperplasia
 b. prostatitis
11.7 conditions of the ovary
 a. ovarian cysts
 b. parovarian cysts
 c. polycystic ovary syndrome (PCOS)
 d. tubo-ovarian cysts
11.8 diseases of the placenta
 a. choriocarcinoma
 b. hydatidiform mole
 c. invasive mole
 d. preeclampsia
11.9 benign conditions of the vagina and vulva
 a. Bartholin cysts
 b. cystocele
 c. rectocele
 d. urethrocele
11.10 reproductive dysplasia and neoplasms
 a. cervical intraepithelial neoplasia (CIN)
 b. endometrial hyperplasia
 c. fibroids (leiomyoma)
 d. invasive carcinoma of the cervix
 e. leiomyosarcomas
 f. prostate carcinoma
 g. tumors of the ovary
 h. squamous cell carcinoma of the penis
 I. testicular tumors
 j. vaginal carcinoma
 k. vulvar carcinoma
 l. vulvar intraepithelial neoplasia
11.11 infectious diseases of the genitourinary system (including STDs)
 a. chancroid
 b. bacterial vaginosis (BV)
 c. chlamydia
 d. gonorrhea
 e. herpes simplex virus (HSV)
 f. human papilloma virus (HPV)
 g. nongonococcal urethritis
 h. syphilis
 i. toxic shock syndrome (TSS)
 j. trichomoniasis
In regard to the urinary system, the naturopathic medical student who has completed her/his biomedical course work and is entering the clinical phase of training should be able to:

1. Describe the embryological development of the organs of the urinary system.
2. Describe the microscopic anatomy of the urinary tract.
3. Describe the location, structure, and boundaries of the urinary system.
4. Describe the location, structure, and boundaries of the abdominopelvic cavity in relation to the urinary system.
5. Describe the circulation of blood in the urinary system.
6. Explain the mechanisms, functions, regulation of, and factors affecting micturation, and urinary filtration, re-absorption, and secretion.
7. Describe the role of the kidney in acid/base balance and regulation of blood pressure.
8. Explain the biochemistry of proteins, carbohydrates, lipids, vitamins, minerals, and co-factors as they relate to urinary function and pathology.
9. Describe the features and explain the principles of gene expression and control, and cell cycle regulation, and explain the consequences of genetic abnormalities that underlie urinary disease processes.
10. Explain the pathogenesis and be able to identify the etiology, risk factors, complications, and clinical characteristics of the conditions listed on the opposite page.
10.1 glomerular diseases
 a. glomerulonephritis
 b. glomerulosclerosis
 c. nephrotic syndromes
 d. renal failure (acute and chronic)

10.2 tubulointerstitial disease
 a. tubular necrosis

10.3 obstructive urinary diseases
 a. hydronephrosis
 b. renal calculi

10.4 inflammatory urinary tract diseases
 a. drug-induced nephritis
 b. chronic pyelonephritis

10.5 congenital urinary disease
 a. Alport syndrome
 b. cystic renal disease
 c. renal agenesis
 d. vesicoureteral reflux (VUR)

10.6 urinary vascular diseases
 a. hemolytic uremic syndrome (HUS)
 b. hypertensive nephrosclerosis
 c. renal artery stenosis
 d. renal infarction
 e. sickle cell nephropathy

10.7 neoplasms of the urinary tract
 a. renal cell carcinoma
 b. nephroblastoma (Wilms tumor)

10.8 infectious urinary diseases
 a. acute pyelonephritis
 b. cystitis
 c. urethritis
ABBREVIATIONS THE EXAMINEE IS EXPECTED TO KNOW

In addition to common biomedical science nomenclature (e.g., CO₂, Fe²⁺, HCl, etc.), examinees are expected to know what the following abbreviations mean:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>angiotensin converting enzyme</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholinesterase</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADH</td>
<td>anti-diuretic hormone</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AFP</td>
<td>alpha fetoprotein</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>ANA</td>
<td>anti-nuclear antibody</td>
</tr>
<tr>
<td>ANS</td>
<td>autonomic nervous system</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AV</td>
<td>atrioventricular</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
</tr>
<tr>
<td>BPM</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAT</td>
<td>choline acetyltransferase</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood count</td>
</tr>
<tr>
<td>CD4</td>
<td>cluster of differentiation 4</td>
</tr>
<tr>
<td>CD8</td>
<td>cluster of differentiation 8</td>
</tr>
<tr>
<td>CEA</td>
<td>carcinoembryonic antigen</td>
</tr>
<tr>
<td>cGMP</td>
<td>guanosine cyclic monophosphate</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>CIN</td>
<td>cervical intraepithelial neoplasia</td>
</tr>
<tr>
<td>CMP</td>
<td>cytosine monophosphate</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CN</td>
<td>cranial nerve</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CPR</td>
<td>cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DHT</td>
<td>dehydrotestosterone</td>
</tr>
<tr>
<td>DJD</td>
<td>degenerative joint disease</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPT</td>
<td>diphtheria-pertussis-tetanus</td>
</tr>
<tr>
<td>DTR</td>
<td>deep tendon reflex</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>ECG/EKG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyogram</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FADH₂</td>
<td>flavin adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>FEV</td>
<td>forced expiratory volume</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GBM</td>
<td>glomerular basement membrane</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma-glutamyl transferase</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>GMP</td>
<td>guanosine 5'-monophosphate</td>
</tr>
<tr>
<td>GnRH</td>
<td>gonadotropin-releasing hormone</td>
</tr>
<tr>
<td>Hb</td>
<td>hemoglobin</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotropin</td>
</tr>
<tr>
<td>Hct</td>
<td>hematocrit</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>LCR</td>
<td>ligase chain reaction</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LHRH</td>
<td>luteinizing hormone releasing hormone</td>
</tr>
<tr>
<td>LLQ</td>
<td>left lower quadrant</td>
</tr>
<tr>
<td>LOC</td>
<td>loss of consciousness</td>
</tr>
<tr>
<td>LUQ</td>
<td>left upper quadrant</td>
</tr>
<tr>
<td>MAO</td>
<td>monoamine oxidase</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIC</td>
<td>minimal inhibitory concentration</td>
</tr>
<tr>
<td>MSH</td>
<td>melanocyte-stimulating hormone</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MVA</td>
<td>motor vehicle accident</td>
</tr>
<tr>
<td>MVC</td>
<td>motor vehicle collision</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetyl cysteine</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NAPDH</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer (cells)</td>
</tr>
<tr>
<td>OTC</td>
<td>over the counter</td>
</tr>
<tr>
<td>PABA</td>
<td>para-amino benzoic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PG</td>
<td>progesterone</td>
</tr>
<tr>
<td>PHAC</td>
<td>Public Health Agency of Canada</td>
</tr>
<tr>
<td>PMN</td>
<td>polymorphonuclear neutrophil</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nervous system</td>
</tr>
<tr>
<td>PRPP</td>
<td>phosphoribosyl pyrophosphate</td>
</tr>
<tr>
<td>PTH</td>
<td>parathyroid hormone</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cells</td>
</tr>
<tr>
<td>RF</td>
<td>rheumatoid factor</td>
</tr>
<tr>
<td>Rh</td>
<td>rhesus factor</td>
</tr>
<tr>
<td>RLQ</td>
<td>right lower quadrant</td>
</tr>
<tr>
<td>RUQ</td>
<td>right upper quadrant</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RSV</td>
<td>respiratory syncytial virus</td>
</tr>
<tr>
<td>SA</td>
<td>sinoatrial</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TIBC</td>
<td>total iron-binding capacity</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TRH</td>
<td>thyrotropin-releasing hormone</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone</td>
</tr>
<tr>
<td>UMP</td>
<td>uracil monophosphate</td>
</tr>
<tr>
<td>URI</td>
<td>upper respiratory infection</td>
</tr>
<tr>
<td>UTI</td>
<td>urinary tract infection</td>
</tr>
<tr>
<td>UTP</td>
<td>uric acid</td>
</tr>
<tr>
<td>VLH</td>
<td>very low density lipoprotein</td>
</tr>
<tr>
<td>VMA</td>
<td>vanillylmandelic acid</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
FORMAT FOR THE EXAMINATION

The 200-item NPLEX Part I - Biomedical Science Examination will be administered in two sections, one in the morning and one in the afternoon. You will be given 3 hours to complete each 100-item section. The examination will consist of 40 case clusters in which you will be presented with a very brief summary of the case, including the patient’s diagnosis. You will then be asked four to five questions on aspects of the biomedical sciences that pertain to that case. For example, you will be given the diagnosis, then you might be asked to identify the related anatomical locations or blood supply, to describe the etiology or complications, to select the causative organism, to identify the related biochemical pathway, or to know how the normal physiological process functions.

Examples of Biomedical Science Case Clusters
(answers can be found on page 44)

Although the items in a cluster relate to a clinical case, clinical experience will not be necessary to answer the items.

The items on the following pages are examples of some types of item formats you might encounter on the integrated NPLEX Part I - Biomedical Science Examination. We recommend that you read through all the example items on the following pages to get an idea of the types of item formats you can expect. These examples do not cover the scope of knowledge that will be tested on the examination. Refer to the list of NPLEX Biomedical Science Competencies (beginning on page 3) to determine the scope of knowledge that will be tested.

Following are some examples of the type of case-based item clusters (case clusters) that will appear on the NPLEX Part I - Biomedical Science Examination. Please note, the examples that follow are not representative of the percentages of items in each specific exam area (anatomy, physiology, biochemistry, genetics, immunology, microbiology, pathology) that will be asked on the examination. All items on the examination will be multiple-choice items with four responses, but questions will be asked in many different formats. On the examination, there will not necessarily be an item in every specific exam area for every case cluster; some case clusters on the examination may consist exclusively of one exam area (e.g., an case cluster might have four microbiology items). Some of the case clusters that follow have only two or three items. On the examination, most case clusters will have four or five questions each. The examples of items are neither inclusive nor exhaustive of item format; however, a review of all sample case clusters will provide a good indication of the types of questions that might be asked on the examination.

Examinees will be required to demonstrate competence in two general exam areas (GEAs): Structure/Function (60%) and Disease/Dysfunction (40%). There will be approximately 40 items from each of the five specific exam areas (SEAs): anatomy, physiology, and biochemistry & genetics (Structure/Function GEA), and microbiology & immunology and pathology (Disease/Dysfunction GEA).
Case #1

A 32-year-old female presents with galactorrhea, frequent headaches, and decreased vision in her left eye. She has a year-long history of amenorrhea. Radiologic studies confirm a pituitary adenoma.

1. Overproduction of which hormone is the most likely cause of her clinical symptoms?
 A. prolactin
 B. growth hormone
 C. antidiuretic hormone
 D. follicle-stimulating hormone

2. Loss of vision in her left monocular visual field could be explained by damage to nerve fibers in the ________.
 A. left optic tract
 B. right optic tract
 C. right frontal lobe cortex
 D. left occipital lobe cortex

3. The pituitary gland is located ________.
 A. anterior to the lesser wings of the sphenoid
 B. within the petrous portion of the temporal bone
 C. superior to the cribriform plate and the crista galli
 D. in the sella turcica, inferior to the diaphragma sellae

4. What is the embryological origin of the cells in her tumor?
 A. diencephalon
 B. oral ectoderm
 C. neural crest cells
 D. rostral neural tube
Case #2

Post-mortem microscopic examination of the proximal end of the left anterior descending coronary artery from a 41-year-old female reveals a thrombotic occlusion arising from an atherosclerotic plaque.

1. Which of the following underlying conditions most likely led to her death?
 A. glomerulonephritis
 B. portal hypertension
 C. calcific aortic stenosis
 D. type 2 diabetes mellitus

2. Hypercholesterolemia was implicated in the pathogenesis of her atherosclerosis. In the synthesis of cholesterol, what is the key regulating enzyme?
 A. phosphodiesterase
 B. HMG-CoA reductase
 C. cholesterol desmolase
 D. cholesterol synthetase

3. What is the source of the left anterior descending coronary artery?
 A. aortic sinus
 B. circumflex artery
 C. left coronary artery
 D. right coronary artery
Case #3

A 3-year-old male presents with epistaxis, pain, and vomiting. Physical examination reveals generalized lymphadenopathy. Lab test results confirm a diagnosis of acute lymphoblastic leukemia.

1. Acute lymphoblastic leukemia is characterized by ________.
 A. Bence-Jones proteins in the urine
 B. decreased numbers of all types of blood cells
 C. tumor masses in multiple contiguous lymph nodes
 D. the presence of Reed-Sternberg cells in the bone marrow

2. The follicles contained within his swollen lymph nodes are composed mostly of ________.
 A. B cells
 B. NK cells
 C. CD4+ T cells
 D. CD8+ T cells

3. His vomiting is initiated by stimulation of which of the following motor nerve fibers in his stomach?
 A. celiac ganglion
 B. vagus nerve (CN X)
 C. glossopharyngeal (CN IX)
 D. superior hypogastric plexus
Case #4

A 20-year-old female presents with difficulty climbing stairs and rising from a seated position. Onset was 6 months ago. Physical examination reveals a dusky red rash over her knuckles, heliotrope discoloration of her upper eyelids, and periorbital edema. She has symmetrical, proximal muscle weakness, and diminished motor strength in all extremities. Deltoid biopsy results confirm a diagnosis of dermatomyositis.

1. Which of the following findings is consistent with a diagnosis of dermatomyositis?
 A. vasculitis
 B. hemochromatosis
 C. amyloid deposition
 D. perifascicular hypertrophy

2. Which of the following antibodies is most likely to be elevated in her serum?
 A. anti-Jo-1
 B. anti-Smith
 C. anti-centromere
 D. anti-DNase B

3. Biopsy shows pathologic changes in the connective tissues and associated muscle tissues. Which type of connective tissue directly surrounds individual muscle fibers?
 A. epimysium
 B. epineurium
 C. perimysium
 D. endomysium

4. Which of the following would most likely cause weakness in a muscle?
 A. increased cytosolic calcium levels
 B. decreased actin-myosin cycling rate
 C. decreased activity of acetylcholinesterase
 D. decreased uptake of calcium into the sarcoplasmic reticulum
Case #5

A 4-week-old male has a ventricular septal defect. Physical examination reveals a systolic murmur, but there is no evidence of cyanosis. Echocardiography shows a left-to-right shunt through a defect in the membranous part of the interventricular septum.

1. The membranous interventricular septum is normally formed by the ________.
 - A. sinus venosus
 - B. septum primum
 - C. septum secundum
 - D. endocardial cushions

2. How have his cardiac hemodynamics changed as a result of his left-to-right shunt?
 - A. heart rate is decreased
 - B. stroke volume is increased
 - C. cardiac output is decreased
 - D. left ventricular end diastolic volume is increased

3. If he had a right-to-left shunt, what would be the consequence?
 - A. cyanosis
 - B. left heart failure
 - C. hypertrophy of the left ventricle
 - D. re-opening of the foramen ovale

4. His condition predisposes him to infective endocarditis. One week later, he develops a fever and several septic emboli are detected in his lungs. Which pathogenic bacteria would be the most likely cause of his sepsis?
 - A. Streptococcus viridans
 - B. Staphylococcus aureus
 - C. Haemophilus influenzae
 - D. Staphylococcus epidermidis
Case #6

A 22-year-old male has a history of mild, fluctuating, unconjugated hyperbilirubinemia. Lab test results indicate normal liver function. As there is no evidence of other disease processes, he is diagnosed with Gilbert syndrome.

1. What is the etiology of Gilbert syndrome?
 A. a genetic absence of UDP-glucuronosyltransferase
 B. a genetic decrease in hepatic levels of UDP-glucuronosyltransferase
 C. immature hepatic processing, causing deficient conjugation of bilirubin
 D. a deficiency of canalicular membrane transporters of bilirubin glucuronide

2. To make bilirubin more hydrophilic and facilitate its secretion into the biliary canaliculi, bilirubin is conjugated with ________.
 A. ascorbic acid
 B. hyaluronic acid
 C. glucuronic acid
 D. levomefolic acid

3. Bile drains directly from a bile canaliculus into a bile duct that is structurally parallel to a ________ in a portal triad.
 A. sinusoid
 B. cystic duct
 C. portal vein
 D. hepatic vein

4. Normally, bilirubin is ________ before it is excreted from the body via the kidneys.
 A. converted to biliverdin
 B. converted to stercobilin
 C. neutralized by uric acid
 D. converted to urobilinogen
Case #7

A 57-year-old male has a routine physical examination, including lab tests. His lab test results indicate significant hypercholesterolemia.

1. He is prescribed a cholesterol-lowering statin drug. Statin drugs affect the rate-limiting enzyme used in the biosynthesis of cholesterol. What is this rate-limiting enzyme?
 A. lipoprotein lipase
 B. HMG CoA synthase
 C. HMG CoA reductase
 D. acetyl-CoA synthetase

2. When evaluating his lipid levels, the physician must differentiate between the different types of lipoproteins. What is the function of VLDL?
 A. transport of dietary lipids
 B. transport of cholesterol to the liver
 C. transport of triglycerides to the liver
 D. removal of triglycerides from the liver

3. Dietary cholesterol is transported to the liver as ________.
 A. LDL
 B. HDL
 C. VLDL
 D. chylomicrons

4. Hypercholesterolemia is a risk factor associated with the formation of atherosclerotic plaques. These plaques occur in which part of the vascular anatomy?
 A. tunica media
 B. tunica intima
 C. tunica externa
 D. tunica adventitia

5. An agent that binds with bile acids to form insoluble compounds in the digestive tract will ________ serum cholesterol levels, as ________.
 A. decrease; HMG-CoA reductase is inhibited
 B. increase; HMG-CoA synthase is stimulated
 C. increase; the liver synthesizes new bile acids from cholesterol
 D. decrease; the liver synthesizes new bile acids from cholesterol
Case #8

A 50-year-old male presents with episodes of edema, shortness of breath, and uncontrolled hypertension.

1. Changes in blood pressure are sensed by baroreceptors in the carotid sinus. The carotid sinus is innervated primarily by the ________.
 A. facial nerve
 B. hypoglossal nerve
 C. glossopharyngeal nerve
 D. sympathetic chain ganglia

2. Ion channels play a key role in stabilizing blood pressure. What is the principle cation found in intracellular fluid, which is beneficial in the treatment of hypertension?
 A. zinc
 B. sodium
 C. calcium
 D. potassium

3. In addition to increasing sympathetic output and mineralocorticoid secretion, how does the renin-angiotensin-aldosterone system elevate systemic blood pressure?
 A. It increases blood volume.
 B. It decreases sodium retention.
 C. It decreases atrial natriuretic peptide.
 D. It causes direct systemic vasoconstriction.

4. When released from the vasa recta of the kidney, which protein initiates the angiotensin cascade?
 A. renin
 B. vasopressin
 C. angiotensin I
 D. angiotensinogen
A 42-year-old male presents with chronic nausea, emesis, and upper abdominal pain. Lab test results indicate normal serum gastrin and a normal CBC. He is diagnosed with chronic gastritis caused by Helicobacter pylori.

1. A gastric biopsy would most likely reveal the presence of H. pylori and the presence of ________.
 A. normal rugal folds with multiple hemorrhagic erosions of the gastric mucosa
 B. intraepithelial neutrophils and subepithelial plasma cells of the stomach antrum
 C. enlarged rugae and hyperplasia of the mucosal epithelium, and no inflammation
 D. mucosal atrophy with lymphocytes and macrophages present in the stomach body and fundus, and loss of parietal cells

2. H. pylori is able to survive in the acidic environment of the stomach because the organism secretes ________, which neutralizes the acid.
 A. urease
 B. an exotoxin
 C. carbonic anhydrase
 D. a polysaccharide capsule

3. His impaired digestion is most likely due to reduced pepsin production. Pepsinogen is produced by which of the following cells?
 A. chief cells
 B. parietal cells
 C. glands of Brunner
 D. islets of Langerhans

4. In a patient who has gastritis, the mucosa and the lamina propria are affected. The lamina propria is histologically classified as ________.
 A. glandular epithelium
 B. simple columnar epithelium
 C. loose areolar connective tissue
 D. dense irregular connective tissue

5. Which one of the following agents stimulates gastric acid secretion?
 A. gastrin
 B. secretin
 C. pepsinogen
 D. cholecystokinin
Case #10

A 68-year-old female presents with a 3-week history of acute low back pain. Radiologic studies show severe osteoporosis and a compression fracture of L5.

1. A compression fracture of L5 results in impingement of the L5 spinal nerve as it exits the vertebral canal through the ________.
 A. vertebral foramen
 B. transverse foramen
 C. intervertebral foramen
 D. anterior sacral foramen

2. The pathogenesis of osteoporosis includes ________.
 A. decreased in total bone mass
 B. increased osteoblastic activity
 C. decreased osteoclastic activity
 D. the accumulation of excess osteoid matrix

3. The absorption of ________, which occurs in the proximal small intestine is made possible by ________.
 A. retinol; calcitriol
 B. calcium; calcitriol
 C. calcium; cholecalciferol
 D. cholecalciferol; hydroxylation reactions

4. The final biologically active metabolite of vitamin D requires several steps of conversion to take place in various tissues of the body. Conversion of D₃ to 25(OH)D₃ occurs in the ________.
 A. skin
 B. liver
 C. brain
 D. kidney

5. This patient has an imbalance of bone deposition and reabsorption, which has resulted in her decreased bone density. What is the principal mechanism calcitonin uses to influence bone density?
 A. decreased osteoblastic activity
 B. decreased osteoclastic activity
 C. increased release of calcium from transient pools
 D. increased reabsorption of calcium in the kidney tubules
Case # 11

A 39-year-old female presents with numbness on one side of her face, weakness of her ipsilateral arm, and blurred vision. Physical examination reveals increased patellar and calcaneal deep tendon reflexes. Radiologic studies confirm a diagnosis of multiple sclerosis.

1. Multiple sclerosis is caused by a progressive destruction of which structures?
 A. neurons
 B. astrocytes
 C. Schwann cells
 D. myelin sheaths

2. Her condition is due to the activation of which immune cells?
 A. T cells
 B. B cells
 C. PMNs
 D. NK cells

3. As her multiple sclerosis progresses, CNS white matter begins to resemble gray matter histologically. This change is caused by the destruction of ________.
 A. ceramide and cerebrosides
 B. sphingolipids and ceramide
 C. surfactants and sphingomyelin
 D. sphingolipids and phospholipids

4. What caused the increase in her deep tendon reflexes?
 A. increased cerebellar activity
 B. loss of antagonist muscle activity
 C. loss of upper motor neuron activity
 D. increased upper motor neuron activity

5. Which nerve innervates the calcaneal tendon?
 A. sural
 B. tibial
 C. femoral
 D. deep fibular
Case #12

A 1-week-old female is diagnosed with phenylketonuria (PKU).

1. In the pathogenesis of PKU, ________ cannot be converted into ________.
 A. serine; phenylalanine
 B. phenylalanine; serine
 C. tyrosine; phenylalanine
 D. phenylalanine; tyrosine

2. What is the inheritance pattern of PKU?
 A. x-linked recessive
 B. x-linked dominant
 C. autosomal recessive
 D. autosomal dominant

3. PKU is associated with inadequate activity of which enzyme?
 A. phenylalanine anhydrase
 B. phenylalanine hydroxylase
 C. 3-ketoacyl-CoA transferase
 D. phenylalanine dehydrogenase

4. The child has a musty odor. What is the most likely cause?
 A. accumulation of serum ammonia levels
 B. accumulation of metabolites of methionine
 C. inadequate breakdown of phenylacetic acid
 D. increased action of phenylalanine hydroxylase
Case #13

A 16-year-old male who has a history of intravenous drug abuse presents with fever, productive cough, and chest pain. Physical examination reveals tachypnea and central cyanosis. Lab test results indicate neutropenia. Radiologic studies confirm a diagnosis of bacterial bronchopneumonia.

1. In the lung of a patient who has bacterial bronchopneumonia, which morphologic changes are most likely to be present?
 A. total lobar fibrinosuppurative consolidation
 B. inflammatory changes confined within alveolar septa that are edematous
 C. inflammatory changes in the alveoli with the presence of hyaline membranes
 D. patchy consolidated areas of acute suppurative inflammation in one or more lobes

2. His inflammatory reaction to the infection was initiated in response to components of the infectious organism’s cell wall. These cell wall components directly stimulate ________.
 A. proliferation of NK cells
 B. activation of complement
 C. differentiation of T_17 cells
 D. production of IgE antibodies

3. Which organism is the most likely cause of his pneumonia?
 A. Staphylococcus aureus
 B. Klebsiella pneumoniae
 C. Pseudomonas aeruginosa
 D. Streptococcus pneumoniae

4. As a potential sequelae to his condition, respiratory acidosis is most likely to occur if he ________.
 A. is anemic
 B. is vomiting
 C. has hypokalemia
 D. has fluid accumulation in the alveoli
Case #14

A 20-year-old male presents with fever, hemoptysis, and hematuria. He has a recent history of a viral-like illness, which preceded the presenting symptoms. Lab test results confirm a diagnosis of Goodpasture syndrome.

1. In a patient who has this condition, which pathological change is most likely to occur?
 A. IgA deposition in the mesangium
 B. immune-complex deposition on both sides of basement membrane
 C. anti-GBM antibody deposition in the glomerular basement membrane
 D. loss of foot processes without morphological changes in the glomeruli

2. GFR is influenced by the integrity of the glomerular filtration barrier. This barrier is composed of the basal lamina, situated between a layer of ________ and a layer of ________.
 A. mesangial cells; podocytes
 B. mesangial cells; simple cuboidal epithelium
 C. glomerular capillary endothelium; podocytes
 D. glomerular capillary endothelium; simple cuboidal epithelium

3. The basal lamina is composed of three proteins: laminin, entactin, and ________.
 A. keratin
 B. albumin
 C. globulin
 D. type IV collagen

4. In a patient who has this condition, decreased GFR will cause compensatory changes in the renal tubules. To achieve this compensation in the renal tubule, which Starling force would be altered, and in which direction?
 A. tubular osmotic pressure would decrease
 B. interstitial osmotic pressure would increase
 C. tubular hydrostatic pressure would decrease
 D. interstitial hydrostatic pressure would increase
Case #15

A 50-year-old male has a 5-year history of autosomal dominant polycystic kidney disease (ADPKD). He complains of a sudden, severe headache, and then rapidly loses consciousness. Lab test results reveal numerous RBCs in his cerebrospinal fluid. He is diagnosed with a subarachnoid hemorrhage.

1. To obtain a sample of CSF during a lumbar puncture, which layers, from superficial to deep, would a needle puncture?
 A. ligamentum flavum, dura mater, and arachnoid
 B. ligamentum flavum, annulus fibrosis, and dura mater
 C. dura mater, arachnoid, and posterior longitudinal ligament
 D. periosteum, ligamentum flavum, and posterior longitudinal ligament

2. His subarachnoid hemorrhage was most likely due to a rupture of weakened blood vessels. Which of the following would increase the tensile strength of collagen in his blood vessels by coupling hydroxyl groups with proline and lysine residues?
 A. zinc
 B. vitamin C
 C. vitamin K
 D. glucosamine

3. A patient who has this condition may experience vasospasm in reaction to the hemorrhage. Which mineral would be most useful in preventing vasospasm?
 A. sodium
 B. calcium
 C. potassium
 D. magnesium

4. The kidney responds to changes in systemic blood pressure by releasing variable amounts of renin. Which cells in which part of the kidney release renin?
 A. macula densa in the proximal tubule
 B. juxtaglomerular cells in Bowman’s space
 C. macula densa in the distal convoluted tubule
 D. juxtaglomerular cells in the afferent arteriole
Case #16

A 6-year-old male presents with muscle weakness and difficulty rising from a seated position. Physical examination reveals decreased muscle strength in his lower extremities, wasting in his pelvic muscles, and mild hypertrophy of his calf muscles. He is diagnosed with muscular dystrophy (MD).

1. In this patient, which muscle protein is most likely aberrant or missing?
 A. actin
 B. myosin
 C. troponin
 D. dystrophin

2. Weakness in which muscle would most likely explain his difficulty rising from a seated position?
 A. rectus femoris
 B. gluteus medius
 C. gluteus maximus
 D. obturator externus

3. Which major regulatory proteins are found in muscle tissue and control normal muscle contraction?
 A. myosin and actin
 B. actin and troponin
 C. myosin and tropomyosin
 D. troponin and tropomyosin

4. Complement-activated membrane attack complexes (MAC complexes) have been observed in affected muscle cells of a patient who has MD. Formation of these MAC complexes is directly initiated when which active complement protein binds to the cell membrane?
 A. C1q
 B. C2b
 C. C3a
 D. C5b
ANSWERS TO ITEMS:

Case #2: 1. D 2. B 3. C
Case #5: 1. D 2. C 3. A 4. A
SUGGESTIONS FOR A STUDY STRATEGY

- **Familiarize yourself with the NPLEX competencies early in your naturopathic training.**
 The competencies contained in this study guide should be studied thoroughly.

- **Take the Biomedical Science Examination at the end of your second year of school.**
 NPLEX recommends that you take the Part I - Biomedical Science Examination soon after you complete your biomedical science training, when the information will be fresh in your mind. NABNE will not allow you to take the NPLEX Part II - Clinical Science Examination(s) until you have passed the Part I - Biomedical Science Examination.

- **Begin your review early.**
 Expect to spend 6 to 8 hours per day studying during the months before the exam administration.

- **Budget additional study time for weak areas.**
 Begin your studies by identifying your areas of weakness within the competencies for each body system (e.g., the biochemistry of the cardiovascular system). Distribute your allotted study time by beginning with areas of particular weakness and then returning to these topics right before the testing date.

- **Familiarize yourself with the testing format and procedures.**
 The Part I - Biomedical Science Examination will have 200 items. Each of these items has only one best answer. Several types of items within this format are included in this study guide.

- **Expect the examination to be challenging.**
 NPLEX examinations are developed in accordance with national testing standards. NPLEX trains item writers in the principles of writing clear items. Every item is reviewed by at least 11 NDs and edited to ensure that it is as straightforward as possible. You should, however, expect the items to be intellectually challenging.

- **Approach the exam process with a positive attitude.**
 Board-level examination is one of the factors that sets you apart from “naturopaths” who have received training through correspondence schools. If you approach your study time with the attitude that this is your chance to synthesize what you have learned in the past 2 years of school (instead of having the attitude that this is just one more hurdle you must clear), you will minimize the impact that a negative attitude can have on your performance.
SUGGESTIONS FOR
TAKING AN NPLEX MULTIPLE-CHOICE EXAMINATION

The NPlex Part I - Biomedical Science Examination is designed to test knowledge of anatomy, biochemistry & genetics, microbiology & immunology, pathology, and physiology. If the student takes the examination soon after finishing biomedical training, the information will be fresh in the examinee’s mind and s/he will have the best chance of passing the examination in one sitting.

In preparing for NPLEX, there is no quick substitute for years of study. Cramming the night before the examination will usually not improve the examinee's scores. It is more important to relax and get a good night's sleep. Expect to have some anxiety; this may actually add to mental alertness.

To avoid two common errors associated with filling out the NPLEX exam answer form, keep these guidelines in mind:

- First, the bubbles must be filled in **darkly** and **completely**. If a mark is too light or only fills part of the bubble, the optical mark reader might score that item as unanswered and you will not be given credit for it. Erasures should be made completely. If there is still a mark in the bubble, the optical scanner might be unable to interpret which mark you intended, and you will not receive credit for any answer.
- Second, make sure that you are filling in the bubble that corresponds to the exam item you are answering. For example, if you put the answer to item 4 on the line on the answer sheet for item number 5, you might cause all the rest of your answers to be in the wrong bubble.

You may write on your exam booklets, but **ALL ANSWERS MUST BE ENTERED ON THE SCANNER ANSWER SHEET**.

The examination is meant to test your ability to think on your feet. Some items on the examination will seem relatively easy. Sometimes examinees expect items to be more difficult and read too much into the question. There are no "trick" questions. Item writers have made every effort to write items in a straightforward manner.

When you come to an exam item for which you do not know the answer with absolute certainty, try to eliminate some of the responses. If after eliminating one or two of the responses you still are not sure of the answer, make your best guess from among the remaining choices. Some of the items will be very challenging. You are not expected to answer every question correctly. Usually you only need to answer 60 to 70% of the items correctly in order to pass.

Pace yourself. Some items are more time-consuming than others and while you should have no trouble completing the entire examination in the time allotted, spending too much time on one item might make you feel pressured to speed through the rest. **If you do skip an item, be sure you skip the corresponding line on your answer sheet.** As the penalty for an unanswered item is the same as that for an incorrect response, you might want to mark your best guess on a difficult item and then return to it later if you have time.

Believing that you MUST pass the examination will add pressure and anxiety, and might cause you to perform below your level of ability. Having a contingency plan will ease some of that pressure and allow you to function at your best.
THE NPLEX PROCESS

EXAM DEVELOPMENT: Biomedical Science exam items are written and referenced by biomedical science faculty and NDs in the US and Canada. Items are screened, reviewed, and rewritten as necessary by Local Exam Committee members, including basic science faculty and practicing NDs. New items are added to a computer item bank for each exam administration. Several committees review the individual items and the compiled cases. Before it is used on an examination, every item is reviewed by at least 11 NDs for accuracy, relevance, and appropriateness. The examinations are edited and proofread. After corrections are made, exam booklets are produced and sent to the test sites for administration.

ESTABLISHING THE PASSING SCORE: Because NPLEX examinations are criterion-referenced, each examination has a passing score that is independent of the passing scores of other examinations. The Angoff method (a nationally accepted testing standard) is used to establish this score. Naturopathic physicians rate the difficulty of each exam item by answering the question, “What percentage of minimally competent students entering the clinical phase of training should be able to answer this item correctly?” These ratings are averaged to determine the cut score for each exam item. Then the cut scores for every item in each general exam area (Structure/Function and Disease/Dysfunction) are averaged to determine the cut score for the general exam areas. Examinations that are judged to be difficult have lower cut scores than easy examinations (i.e., for a difficult examination, the examinee will be required to answer fewer questions correctly in order to pass). Cut scores are set before answer sheets are scored.

SCORING THE EXAMINATIONS: Due to the extensive post-test analysis process, it takes approximately 6 weeks to complete the scoring process. Exam answer sheets are scanned by an optical scanner using the latest technology. Reports and statistics are calculated without reference to any individual’s scores. Item analyses and exam summary information are prepared for use in the post-test analysis (PTA).

POST-TEST ANALYSIS: The purpose of the post-test analysis (PTA) is to review exam items that do not perform as expected on the item analysis. Using standard reference texts, the Exam Chair reviews these items to verify that the keyed answer is correct and that there is only one correct answer. Items are reviewed for clarity. The Exam Chair submits her/his recommendations to the PTA Committee, who makes the final decision regarding disposition of the item. Credit may be given for more than one answer, or the item may be deemed valid and appropriate in which case no key changes are made. After a decision has been made about every item in question, changes are made to the scoring key and all examinations are re-scored. This process is done to ensure that the items on which the examinee’s results are based are appropriate and fair.
REFERENCE BOOKLIST

The following books represent some of the texts which are used in preparation of items for the NPLEX Biomedical Science Examination. Please note that item writers are not limited to these reference sources, but those listed here provide some basis for biomedical science review.

Basic Histology (Junqueira)
Clinical Anatomy (Snell)
Clinical Neuroanatomy and Related Neuroscience (Fitzgerald & Folan-Curran)
Clinically-Oriented Anatomy (Moore)
The Developing Human: Clinically-Oriented Embryology (Moore)
Fundamental Neuroscience (Haines)

Biochemistry (Stryer)
Biochemistry (Matthew and Van Holde)
Harper's Review of Biochemistry
Lehninger Principles of Biochemistry
Lippincott's Illustrated Reviews: Biochemistry (Champe, Harvey & Ferrier)

Cellular and Molecular Immunology (Abbas & Lichtman)
Immunobiology (Janeway)
Manual of Clinical Microbiology (Murray)
Medical Immunology (Parslow)
Medical Microbiology (Murray)
Mims’ Pathogenesis of Infectious Disease (Mims et al.)
Microbiology: A Human Perspective (Nester)

Robbins & Cotran Pathological Basis of Disease
Robbins Basic Pathology
Rubin’s Pathology

Hole’s Human Anatomy and Physiology
Principles of Anatomy and Physiology (Tortora et al.)
Review of Medical Physiology (Ganong)
Textbook of Medical Physiology (Boron & Boulpaep)
Textbook of Medical Physiology (Guyton & Hall)